

How to get startup ideas

by Paul Graham

Curated by Guillermo Flor from www.productmarketfit.tech Newsletter

November 2012

The way to get startup ideas is not to try to think of startup ideas. It's to look for

problems, preferably problems you have yourself.

The very best startup ideas tend to have three things in common: they're

something the founders themselves want, that they themselves can build, and

that few others realize are worth doing. Microsoft, Apple, Yahoo, Google, and

Facebook all began this way.

1. Problems

Why is it so important to work on a problem you have? Among other things, it

ensures the problem really exists. It sounds obvious to say you should only

http://www.productmarketfit.tech/

work on problems that exist. And yet by far the most common mistake startups

make is to solve problems no one has.

I made it myself. In 1995 I started a company to put art galleries online. But

galleries didn't want to be online. It's not how the art business works. So why

did I spend 6 months working on this stupid idea? Because I didn't pay attention

to users. I invented a model of the world that didn't correspond to reality, and

worked from that. I didn't notice my model was wrong until I tried to convince

users to pay for what we'd built. Even then I took embarrassingly long to catch

on. I was attached to my model of the world, and I'd spent a lot of time on the

software. They had to want it!

Why do so many founders build things no one wants? Because they begin by

trying to think of startup ideas. That m.o. is doubly dangerous: it doesn't merely

yield few good ideas; it yields bad ideas that sound plausible enough to fool you

into working on them.

At YC we call these "made-up" or "sitcom" startup ideas. Imagine one of the

characters on a TV show was starting a startup. The writers would have to

invent something for it to do. But coming up with good startup ideas is hard. It's

not something you can do for the asking. So (unless they got amazingly lucky)

the writers would come up with an idea that sounded plausible, but was actually

bad.

For example, a social network for pet owners. It doesn't sound obviously

mistaken. Millions of people have pets. Often they care a lot about their pets

and spend a lot of money on them. Surely many of these people would like a

site where they could talk to other pet owners. Not all of them perhaps, but if

just 2 or 3 percent were regular visitors, you could have millions of users. You

could serve them targeted offers, and maybe charge for premium features. [1]

The danger of an idea like this is that when you run it by your friends with pets,

they don't say "I would never use this." They say "Yeah, maybe I could see

using something like that." Even when the startup launches, it will sound

plausible to a lot of people. They don't want to use it themselves, at least not

right now, but they could imagine other people wanting it. Sum that reaction

across the entire population, and you have zero users. [2]

2. Well

When a startup launches, there have to be at least some users who really need

what they're making — not just people who could see themselves using it one

day, but who want it urgently. Usually this initial group of users is small, for the

simple reason that if there were something that large numbers of people

urgently needed and that could be built with the amount of effort a startup

usually puts into a version one, it would probably already exist. Which means

you have to compromise on one dimension: you can either build something a

large number of people want a small amount, or something a small number of

people want a large amount. Choose the latter. Not all ideas of that type are

good startup ideas, but nearly all good startup ideas are of that type.

Imagine a graph whose x axis represents all the people who might want what

you're making and whose y axis represents how much they want it. If you invert

the scale on the y axis, you can envision companies as holes. Google is an

immense crater: hundreds of millions of people use it, and they need it a lot. A

startup just starting out can't expect to excavate that much volume. So you have

two choices about the shape of hole you start with. You can either dig a hole

that's broad but shallow, or one that's narrow and deep, like a well.

Made-up startup ideas are usually of the first type. Lots of people are mildly

interested in a social network for pet owners.

Nearly all good startup ideas are of the second type. Microsoft was a well when

they made Altair Basic. There were only a couple thousand Altair owners, but

without this software they were programming in machine language. Thirty years

later Facebook had the same shape. Their first site was exclusively for Harvard

students, of which there are only a few thousand, but those few thousand users

wanted it a lot.

When you have an idea for a startup, ask yourself: who wants this right now?

Who wants this so much that they'll use it even when it's a crappy version one

made by a two-person startup they've never heard of? If you can't answer that,

the idea is probably bad. [3]

You don't need the narrowness of the well per se. It's depth you need; you get

narrowness as a byproduct of optimizing for depth (and speed). But you almost

always do get it. In practice the link between depth and narrowness is so strong

that it's a good sign when you know that an idea will appeal strongly to a

specific group or type of user.

But while demand shaped like a well is almost a necessary condition for a good

startup idea, it's not a sufficient one. If Mark Zuckerberg had built something

that could only ever have appealed to Harvard students, it would not have been

a good startup idea. Facebook was a good idea because it started with a small

market there was a fast path out of. Colleges are similar enough that if you build

a facebook that works at Harvard, it will work at any college. So you spread

rapidly through all the colleges. Once you have all the college students, you get

everyone else simply by letting them in.

Similarly for Microsoft: Basic for the Altair; Basic for other machines; other

languages besides Basic; operating systems; applications; IPO.

3. Self

How do you tell whether there's a path out of an idea? How do you tell whether

something is the germ of a giant company, or just a niche product? Often you

can't. The founders of Airbnb didn't realize at first how big a market they were

tapping. Initially they had a much narrower idea. They were going to let hosts

rent out space on their floors during conventions. They didn't foresee the

expansion of this idea; it forced itself upon them gradually. All they knew at first

is that they were onto something. That's probably as much as Bill Gates or Mark

Zuckerberg knew at first.

Occasionally it's obvious from the beginning when there's a path out of the initial

niche. And sometimes I can see a path that's not immediately obvious; that's

one of our specialties at YC. But there are limits to how well this can be done,

no matter how much experience you have. The most important thing to

understand about paths out of the initial idea is the meta-fact that these are

hard to see.

So if you can't predict whether there's a path out of an idea, how do you choose

between ideas? The truth is disappointing but interesting: if you're the right sort

of person, you have the right sort of hunches. If you're at the leading edge of a

field that's changing fast, when you have a hunch that something is worth doing,

you're more likely to be right.

In Zen and the Art of Motorcycle Maintenance, Robert Pirsig says:

You want to know how to paint a perfect painting? It's easy. Make yourself

perfect and then just paint naturally. I've wondered about that passage since I

read it in high school. I'm not sure how useful his advice is for painting

specifically, but it fits this situation well. Empirically, the way to have good

startup ideas is to become the sort of person who has them.

Being at the leading edge of a field doesn't mean you have to be one of the

people pushing it forward. You can also be at the leading edge as a user. It was

not so much because he was a programmer that Facebook seemed a good

idea to Mark Zuckerberg as because he used computers so much. If you'd

asked most 40 year olds in 2004 whether they'd like to publish their lives semi-

publicly on the Internet, they'd have been horrified at the idea. But Mark already

lived online; to him it seemed natural.

Paul Buchheit says that people at the leading edge of a rapidly changing field

"live in the future." Combine that with Pirsig and you get:

Live in the future, then build what's missing.

That describes the way many if not most of the biggest startups got started.

Neither Apple nor Yahoo nor Google nor Facebook were even supposed to be

companies at first. They grew out of things their founders built because there

seemed a gap in the world.

If you look at the way successful founders have had their ideas, it's generally

the result of some external stimulus hitting a prepared mind. Bill Gates and Paul

Allen hear about the Altair and think "I bet we could write a Basic interpreter for

it." Drew Houston realizes he's forgotten his USB stick and thinks "I really need

to make my files live online." Lots of people heard about the Altair. Lots forgot

USB sticks. The reason those stimuli caused those founders to start companies

was that their experiences had prepared them to notice the opportunities they

represented.

The verb you want to be using with respect to startup ideas is not "think up" but

"notice." At YC we call ideas that grow naturally out of the founders' own

experiences "organic" startup ideas. The most successful startups almost all

begin this way.

That may not have been what you wanted to hear. You may have expected

recipes for coming up with startup ideas, and instead I'm telling you that the key

is to have a mind that's prepared in the right way. But disappointing though it

may be, this is the truth. And it is a recipe of a sort, just one that in the worst

case takes a year rather than a weekend.

If you're not at the leading edge of some rapidly changing field, you can get to

one. For example, anyone reasonably smart can probably get to an edge of

programming (e.g. building mobile apps) in a year. Since a successful startup

will consume at least 3-5 years of your life, a year's preparation would be a

reasonable investment. Especially if you're also looking for a cofounder. [4]

You don't have to learn programming to be at the leading edge of a domain

that's changing fast. Other domains change fast. But while learning to hack is

not necessary, it is for the forseeable future sufficient. As Marc Andreessen put

it, software is eating the world, and this trend has decades left to run.

Knowing how to hack also means that when you have ideas, you'll be able to

implement them. That's not absolutely necessary (Jeff Bezos couldn't) but it's

an advantage. It's a big advantage, when you're considering an idea like putting

a college facebook online, if instead of merely thinking "That's an interesting

idea," you can think instead "That's an interesting idea. I'll try building an initial

version tonight." It's even better when you're both a programmer and the target

user, because then the cycle of generating new versions and testing them on

users can happen inside one head.

4. Noticing

Once you're living in the future in some respect, the way to notice startup ideas

is to look for things that seem to be missing. If you're really at the leading edge

of a rapidly changing field, there will be things that are obviously missing. What

won't be obvious is that they're startup ideas. So if you want to find startup

ideas, don't merely turn on the filter "What's missing?" Also turn off every other

filter, particularly "Could this be a big company?" There's plenty of time to apply

that test later. But if you're thinking about that initially, it may not only filter out

lots of good ideas, but also cause you to focus on bad ones.

Most things that are missing will take some time to see. You almost have to trick

yourself into seeing the ideas around you.

But you know the ideas are out there. This is not one of those problems where

there might not be an answer. It's impossibly unlikely that this is the exact

moment when technological progress stops. You can be sure people are going

to build things in the next few years that will make you think "What did I do

before x?"

And when these problems get solved, they will probably seem flamingly obvious

in retrospect. What you need to do is turn off the filters that usually prevent you

from seeing them. The most powerful is simply taking the current state of the

world for granted. Even the most radically open-minded of us mostly do that.

You couldn't get from your bed to the front door if you stopped to question

everything.

But if you're looking for startup ideas you can sacrifice some of the efficiency of

taking the status quo for granted and start to question things. Why is your inbox

overflowing? Because you get a lot of email, or because it's hard to get email

out of your inbox? Why do you get so much email? What problems are people

trying to solve by sending you email? Are there better ways to solve them? And

why is it hard to get emails out of your inbox? Why do you keep emails around

after you've read them? Is an inbox the optimal tool for that?

Pay particular attention to things that chafe you. The advantage of taking the

status quo for granted is not just that it makes life (locally) more efficient, but

also that it makes life more tolerable. If you knew about all the things we'll get in

the next 50 years but don't have yet, you'd find present day life pretty

constraining, just as someone from the present would if they were sent back 50

years in a time machine. When something annoys you, it could be because

you're living in the future.

When you find the right sort of problem, you should probably be able to

describe it as obvious, at least to you. When we started Viaweb, all the online

stores were built by hand, by web designers making individual HTML pages. It

was obvious to us as programmers that these sites would have to be generated

by software. [5]

Which means, strangely enough, that coming up with startup ideas is a question

of seeing the obvious. That suggests how weird this process is: you're trying to

see things that are obvious, and yet that you hadn't seen.

Since what you need to do here is loosen up your own mind, it may be best not

to make too much of a direct frontal attack on the problem — i.e. to sit down

and try to think of ideas. The best plan may be just to keep a background

process running, looking for things that seem to be missing. Work on hard

problems, driven mainly by curiosity, but have a second self watching over your

shoulder, taking note of gaps and anomalies. [6]

Give yourself some time. You have a lot of control over the rate at which you

turn yours into a prepared mind, but you have less control over the stimuli that

spark ideas when they hit it. If Bill Gates and Paul Allen had constrained

themselves to come up with a startup idea in one month, what if they'd chosen a

month before the Altair appeared? They probably would have worked on a less

promising idea. Drew Houston did work on a less promising idea before

Dropbox: an SAT prep startup. But Dropbox was a much better idea, both in the

absolute sense and also as a match for his skills. [7]

A good way to trick yourself into noticing ideas is to work on projects that seem

like they'd be cool. If you do that, you'll naturally tend to build things that are

missing. It wouldn't seem as interesting to build something that already existed.

Just as trying to think up startup ideas tends to produce bad ones, working on

things that could be dismissed as "toys" often produces good ones. When

something is described as a toy, that means it has everything an idea needs

except being important. It's cool; users love it; it just doesn't matter. But if you're

living in the future and you build something cool that users love, it may matter

more than outsiders think. Microcomputers seemed like toys when Apple and

Microsoft started working on them. I'm old enough to remember that era; the

usual term for people with their own microcomputers was "hobbyists." BackRub

seemed like an inconsequential science project. The Facebook was just a way

for undergrads to stalk one another.

At YC we're excited when we meet startups working on things that we could

imagine know-it-alls on forums dismissing as toys. To us that's positive

evidence an idea is good.

If you can afford to take a long view (and arguably you can't afford not to), you

can turn "Live in the future and build what's missing" into something even better:

Live in the future and build what seems interesting.

5. School

That's what I'd advise college students to do, rather than trying to learn about

"entrepreneurship." "Entrepreneurship" is something you learn best by doing it.

The examples of the most successful founders make that clear. What you

should be spending your time on in college is ratcheting yourself into the future.

College is an incomparable opportunity to do that. What a waste to sacrifice an

opportunity to solve the hard part of starting a startup — becoming the sort of

person who can have organic startup ideas — by spending time learning about

the easy part. Especially since you won't even really learn about it, any more

than you'd learn about sex in a class. All you'll learn is the words for things.

The clash of domains is a particularly fruitful source of ideas. If you know a lot

about programming and you start learning about some other field, you'll

probably see problems that software could solve. In fact, you're doubly likely to

find good problems in another domain: (a) the inhabitants of that domain are not

as likely as software people to have already solved their problems with

software, and (b) since you come into the new domain totally ignorant, you don't

even know what the status quo is to take it for granted.

So if you're a CS major and you want to start a startup, instead of taking a class

on entrepreneurship you're better off taking a class on, say, genetics. Or better

still, go work for a biotech company. CS majors normally get summer jobs at

computer hardware or software companies. But if you want to find startup ideas,

you might do better to get a summer job in some unrelated field. [8]

Or don't take any extra classes, and just build things. It's no coincidence that

Microsoft and Facebook both got started in January. At Harvard that is (or was)

Reading Period, when students have no classes to attend because they're

supposed to be studying for finals. [9]

But don't feel like you have to build things that will become startups. That's

premature optimization. Just build things. Preferably with other students. It's not

just the classes that make a university such a good place to crank oneself into

the future. You're also surrounded by other people trying to do the same thing.

If you work together with them on projects, you'll end up producing not just

organic ideas, but organic ideas with organic founding teams — and that,

empirically, is the best combination.

Beware of research. If an undergrad writes something all his friends start using,

it's quite likely to represent a good startup idea. Whereas a PhD dissertation is

extremely unlikely to. For some reason, the more a project has to count as

research, the less likely it is to be something that could be turned into a startup.

[10] I think the reason is that the subset of ideas that count as research is so

narrow that it's unlikely that a project that satisfied that constraint would also

satisfy the orthogonal constraint of solving users' problems. Whereas when

students (or professors) build something as a side-project, they automatically

gravitate toward solving users' problems — perhaps even with an additional

energy that comes from being freed from the constraints of research.

6. Competition

Because a good idea should seem obvious, when you have one you'll tend to

feel that you're late. Don't let that deter you. Worrying that you're late is one of

the signs of a good idea. Ten minutes of searching the web will usually settle

the question. Even if you find someone else working on the same thing, you're

probably not too late. It's exceptionally rare for startups to be killed by

competitors — so rare that you can almost discount the possibility. So unless

you discover a competitor with the sort of lock-in that would prevent users from

choosing you, don't discard the idea.

If you're uncertain, ask users. The question of whether you're too late is

subsumed by the question of whether anyone urgently needs what you plan to

make. If you have something that no competitor does and that some subset of

users urgently need, you have a beachhead. [11]

The question then is whether that beachhead is big enough. Or more

importantly, who's in it: if the beachhead consists of people doing something

lots more people will be doing in the future, then it's probably big enough no

matter how small it is. For example, if you're building something differentiated

from competitors by the fact that it works on phones, but it only works on the

newest phones, that's probably a big enough beachhead.

Err on the side of doing things where you'll face competitors. Inexperienced

founders usually give competitors more credit than they deserve. Whether you

succeed depends far more on you than on your competitors. So better a good

idea with competitors than a bad one without.

You don't need to worry about entering a "crowded market" so long as you have

a thesis about what everyone else in it is overlooking. In fact that's a very

promising starting point. Google was that type of idea. Your thesis has to be

more precise than "we're going to make an x that doesn't suck" though. You

have to be able to phrase it in terms of something the incumbents are

overlooking. Best of all is when you can say that they didn't have the courage of

their convictions, and that your plan is what they'd have done if they'd followed

through on their own insights. Google was that type of idea too. The search

engines that preceded them shied away from the most radical implications of

what they were doing — particularly that the better a job they did, the faster

users would leave.

A crowded market is actually a good sign, because it means both that there's

demand and that none of the existing solutions are good enough. A startup

can't hope to enter a market that's obviously big and yet in which they have no

competitors. So any startup that succeeds is either going to be entering a

market with existing competitors, but armed with some secret weapon that will

get them all the users (like Google), or entering a market that looks small but

which will turn out to be big (like Microsoft). [12]

7. Filters

There are two more filters you'll need to turn off if you want to notice startup

ideas: the unsexy filter and the schlep filter.

Most programmers wish they could start a startup by just writing some brilliant

code, pushing it to a server, and having users pay them lots of money. They'd

prefer not to deal with tedious problems or get involved in messy ways with the

real world. Which is a reasonable preference, because such things slow you

down. But this preference is so widespread that the space of convenient startup

ideas has been stripped pretty clean. If you let your mind wander a few blocks

down the street to the messy, tedious ideas, you'll find valuable ones just sitting

there waiting to be implemented.

The schlep filter is so dangerous that I wrote a separate essay about the

condition it induces, which I called schlep blindness. I gave Stripe as an

example of a startup that benefited from turning off this filter, and a pretty

striking example it is. Thousands of programmers were in a position to see this

idea; thousands of programmers knew how painful it was to process payments

before Stripe. But when they looked for startup ideas they didn't see this one,

because unconsciously they shrank from having to deal with payments. And

dealing with payments is a schlep for Stripe, but not an intolerable one. In fact

they might have had net less pain; because the fear of dealing with payments

kept most people away from this idea, Stripe has had comparatively smooth

sailing in other areas that are sometimes painful, like user acquisition. They

didn't have to try very hard to make themselves heard by users, because users

were desperately waiting for what they were building.

The unsexy filter is similar to the schlep filter, except it keeps you from working

on problems you despise rather than ones you fear. We overcame this one to

work on Viaweb. There were interesting things about the architecture of our

software, but we weren't interested in ecommerce per se. We could see the

problem was one that needed to be solved though.

Turning off the schlep filter is more important than turning off the unsexy filter,

because the schlep filter is more likely to be an illusion. And even to the degree

it isn't, it's a worse form of self-indulgence. Starting a successful startup is going

to be fairly laborious no matter what. Even if the product doesn't entail a lot of

schleps, you'll still have plenty dealing with investors, hiring and firing people,

and so on. So if there's some idea you think would be cool but you're kept away

from by fear of the schleps involved, don't worry: any sufficiently good idea will

have as many.

http://www.paulgraham.com/schlep.html

The unsexy filter, while still a source of error, is not as entirely useless as the

schlep filter. If you're at the leading edge of a field that's changing rapidly, your

ideas about what's sexy will be somewhat correlated with what's valuable in

practice. Particularly as you get older and more experienced. Plus if you find an

idea sexy, you'll work on it more enthusiastically. [13]

8. Recipes

While the best way to discover startup ideas is to become the sort of person

who has them and then build whatever interests you, sometimes you don't have

that luxury. Sometimes you need an idea now. For example, if you're working

on a startup and your initial idea turns out to be bad.

For the rest of this essay I'll talk about tricks for coming up with startup ideas on

demand. Although empirically you're better off using the organic strategy, you

could succeed this way. You just have to be more disciplined. When you use

the organic method, you don't even notice an idea unless it's evidence that

something is truly missing. But when you make a conscious effort to think of

startup ideas, you have to replace this natural constraint with self-discipline.

You'll see a lot more ideas, most of them bad, so you need to be able to filter

them.

One of the biggest dangers of not using the organic method is the example of

the organic method. Organic ideas feel like inspirations. There are a lot of

stories about successful startups that began when the founders had what

seemed a crazy idea but "just knew" it was promising. When you feel that about

an idea you've had while trying to come up with startup ideas, you're probably

mistaken.

When searching for ideas, look in areas where you have some expertise. If

you're a database expert, don't build a chat app for teenagers (unless you're

also a teenager). Maybe it's a good idea, but you can't trust your judgment

about that, so ignore it. There have to be other ideas that involve databases,

and whose quality you can judge. Do you find it hard to come up with good

ideas involving databases? That's because your expertise raises your

standards. Your ideas about chat apps are just as bad, but you're giving

yourself a Dunning-Kruger pass in that domain.

The place to start looking for ideas is things you need. There must be things

you need. [14]

One good trick is to ask yourself whether in your previous job you ever found

yourself saying "Why doesn't someone make x? If someone made x we'd buy it

in a second." If you can think of any x people said that about, you probably have

an idea. You know there's demand, and people don't say that about things that

are impossible to build.

More generally, try asking yourself whether there's something unusual about

you that makes your needs different from most other people's. You're probably

not the only one. It's especially good if you're different in a way people will

increasingly be.

If you're changing ideas, one unusual thing about you is the idea you'd

previously been working on. Did you discover any needs while working on it?

Several well-known startups began this way. Hotmail began as something its

founders wrote to talk about their previous startup idea while they were working

at their day jobs. [15]

A particularly promising way to be unusual is to be young. Some of the most

valuable new ideas take root first among people in their teens and early

twenties. And while young founders are at a disadvantage in some respects,

they're the only ones who really understand their peers. It would have been very

hard for someone who wasn't a college student to start Facebook. So if you're a

young founder (under 23 say), are there things you and your friends would like

to do that current technology won't let you?

The next best thing to an unmet need of your own is an unmet need of

someone else. Try talking to everyone you can about the gaps they find in the

world. What's missing? What would they like to do that they can't? What's

tedious or annoying, particularly in their work? Let the conversation get general;

don't be trying too hard to find startup ideas. You're just looking for something to

spark a thought. Maybe you'll notice a problem they didn't consciously realize

they had, because you know how to solve it.

When you find an unmet need that isn't your own, it may be somewhat blurry at

first. The person who needs something may not know exactly what they need.

In that case I often recommend that founders act like consultants — that they do

what they'd do if they'd been retained to solve the problems of this one user.

People's problems are similar enough that nearly all the code you write this way

will be reusable, and whatever isn't will be a small price to start out certain that

you've reached the bottom of the well. [16]

One way to ensure you do a good job solving other people's problems is to

make them your own. When Rajat Suri of E la Carte decided to write software

for restaurants, he got a job as a waiter to learn how restaurants worked. That

may seem like taking things to extremes, but startups are extreme. We love it

when founders do such things.

In fact, one strategy I recommend to people who need a new idea is not merely

to turn off their schlep and unsexy filters, but to seek out ideas that are unsexy

or involve schleps. Don't try to start Twitter. Those ideas are so rare that you

can't find them by looking for them. Make something unsexy that people will pay

you for.

A good trick for bypassing the schlep and to some extent the unsexy filter is to

ask what you wish someone else would build, so that you could use it. What

would you pay for right now?

Since startups often garbage-collect broken companies and industries, it can be

a good trick to look for those that are dying, or deserve to, and try to imagine

what kind of company would profit from their demise. For example, journalism is

in free fall at the moment. But there may still be money to be made from

something like journalism. What sort of company might cause people in the

future to say "this replaced journalism" on some axis?

But imagine asking that in the future, not now. When one company or industry

replaces another, it usually comes in from the side. So don't look for a

replacement for x; look for something that people will later say turned out to be

a replacement for x. And be imaginative about the axis along which the

replacement occurs. Traditional journalism, for example, is a way for readers to

get information and to kill time, a way for writers to make money and to get

attention, and a vehicle for several different types of advertising. It could be

replaced on any of these axes (it has already started to be on most).

When startups consume incumbents, they usually start by serving some small

but important market that the big players ignore. It's particularly good if there's

an admixture of disdain in the big players' attitude, because that often misleads

them. For example, after Steve Wozniak built the computer that became the

Apple I, he felt obliged to give his then-employer Hewlett-Packard the option to

produce it. Fortunately for him, they turned it down, and one of the reasons they

did was that it used a TV for a monitor, which seemed intolerably déclassé to a

high-end hardware company like HP was at the time. [17]

Are there groups of scruffy but sophisticated users like the early microcomputer

"hobbyists" that are currently being ignored by the big players? A startup with its

sights set on bigger things can often capture a small market easily by

expending an effort that wouldn't be justified by that market alone.

Similarly, since the most successful startups generally ride some wave bigger

than themselves, it could be a good trick to look for waves and ask how one

could benefit from them. The prices of gene sequencing and 3D printing are

both experiencing Moore's Law-like declines. What new things will we be able to

do in the new world we'll have in a few years? What are we unconsciously ruling

out as impossible that will soon be possible?

http://www.paulgraham.com/marginal.html

9. Organic

But talking about looking explicitly for waves makes it clear that such recipes

are plan B for getting startup ideas. Looking for waves is essentially a way to

simulate the organic method. If you're at the leading edge of some rapidly

changing field, you don't have to look for waves; you are the wave.

Finding startup ideas is a subtle business, and that's why most people who try

fail so miserably. It doesn't work well simply to try to think of startup ideas. If you

do that, you get bad ones that sound dangerously plausible. The best approach

is more indirect: if you have the right sort of background, good startup ideas will

seem obvious to you. But even then, not immediately. It takes time to come

across situations where you notice something missing. And often these gaps

won't seem to be ideas for companies, just things that would be interesting to

build. Which is why it's good to have the time and the inclination to build things

just because they're interesting.

Live in the future and build what seems interesting. Strange as it sounds, that's

the real recipe.

Notes

[1] This form of bad idea has been around as long as the web. It was common

in the 1990s, except then people who had it used to say they were going to

create a portal for x instead of a social network for x. Structurally the idea is

stone soup: you post a sign saying "this is the place for people interested in x,"

and all those people show up and you make money from them. What lures

founders into this sort of idea are statistics about the millions of people who

might be interested in each type of x. What they forget is that any given person

might have 20 affinities by this standard, and no one is going to visit 20 different

communities regularly.

[2] I'm not saying, incidentally, that I know for sure a social network for pet

owners is a bad idea. I know it's a bad idea the way I know randomly generated

DNA would not produce a viable organism. The set of plausible sounding

startup ideas is many times larger than the set of good ones, and many of the

good ones don't even sound that plausible. So if all you know about a startup

idea is that it sounds plausible, you have to assume it's bad.

[3] More precisely, the users' need has to give them sufficient activation energy

to start using whatever you make, which can vary a lot. For example, the

activation energy for enterprise software sold through traditional channels is

very high, so you'd have to be a lot better to get users to switch. Whereas the

activation energy required to switch to a new search engine is low. Which in

turn is why search engines are so much better than enterprise software.

[4] This gets harder as you get older. While the space of ideas doesn't have

dangerous local maxima, the space of careers does. There are fairly high walls

between most of the paths people take through life, and the older you get, the

higher the walls become.

[5] It was also obvious to us that the web was going to be a big deal. Few non-

programmers grasped that in 1995, but the programmers had seen what GUIs

had done for desktop computers.

[6] Maybe it would work to have this second self keep a journal, and each night

to make a brief entry listing the gaps and anomalies you'd noticed that day. Not

startup ideas, just the raw gaps and anomalies.

[7] Sam Altman points out that taking time to come up with an idea is not merely

a better strategy in an absolute sense, but also like an undervalued stock in that

so few founders do it.

There's comparatively little competition for the best ideas, because few

founders are willing to put in the time required to notice them. Whereas there is

a great deal of competition for mediocre ideas, because when people make up

startup ideas, they tend to make up the same ones.

[8] For the computer hardware and software companies, summer jobs are the

first phase of the recruiting funnel. But if you're good you can skip the first

phase. If you're good you'll have no trouble getting hired by these companies

when you graduate, regardless of how you spent your summers.

[9] The empirical evidence suggests that if colleges want to help their students

start startups, the best thing they can do is leave them alone in the right way.

[10] I'm speaking here of IT startups; in biotech things are different.

[11] This is an instance of a more general rule: focus on users, not competitors.

The most important information about competitors is what you learn via users

anyway.

[12] In practice most successful startups have elements of both. And you can

describe each strategy in terms of the other by adjusting the boundaries of what

you call the market. But it's useful to consider these two ideas separately.

[13] I almost hesitate to raise that point though. Startups are businesses; the

point of a business is to make money; and with that additional constraint, you

can't expect you'll be able to spend all your time working on what interests you

most.

[14] The need has to be a strong one. You can retroactively describe any made-

up idea as something you need. But do you really need that recipe site or local

event aggregator as much as Drew Houston needed Dropbox, or Brian Chesky

and Joe Gebbia needed Airbnb?

Quite often at YC I find myself asking founders "Would you use this thing

yourself, if you hadn't written it?" and you'd be surprised how often the answer

is no.

[15] Paul Buchheit points out that trying to sell something bad can be a source

of better ideas:

"The best technique I've found for dealing with YC companies that have bad

ideas is to tell them to go sell the product ASAP (before wasting time building

it). Not only do they learn that nobody wants what they are building, they very

often come back with a real idea that they discovered in the process of trying to

sell the bad idea."

[16] Here's a recipe that might produce the next Facebook, if you're college

students. If you have a connection to one of the more powerful sororities at your

school, approach the queen bees thereof and offer to be their personal IT

consultants, building anything they could imagine needing in their social lives

that didn't already exist. Anything that got built this way would be very

promising, because such users are not just the most demanding but also the

perfect point to spread from.

I have no idea whether this would work.

[17] And the reason it used a TV for a monitor is that Steve Wozniak started out

by solving his own problems. He, like most of his peers, couldn't afford a

monitor.

Thanks to Sam Altman, Mike Arrington, Paul Buchheit, John Collison, Patrick

Collison, Garry Tan, and Harj Taggar for reading drafts of this, and Marc

Andreessen, Joe Gebbia, Reid Hoffman, Shel Kaphan, Mike Moritz and Kevin

Systrom for answering my questions about startup history.

🚀Interested in startups & VC?

Check out Product Market Fit Newsletter: https://www.productmarketfit.tech

https://www.productmarketfit.tech/

